
DIRECT IMPLEMENTATION OF SELF-TUNING LQ CON-
TROLLER FROM SIMULINK INTO B&R PLC

Martin Dvořáček
Doctoral Degree Programme (1), FEEC BUT

E-mail: xdvora73@stud.feec.vutbr.cz

Supervised by: Petr Pivoňka
E-mail: pivonka@feec.vutbr.cz

ABSTRACT
In this article, automatic build ANSI C source code from simulink model is realized
through the Real-Time Workshop Embedded Coder toolbox for Simulink. Created source
code is implemented to PLC and tested in control of physical model. Automation runtime
target for Matlab and Automation Studio 3.0 from B&R was used for programming PLC.

1. INTRODUCTION
Control algorithm implementation is time consuming. Development and testing can be
separated into several phases. SIL (software in the loop) and PIL (processor in the loop)
phase are widely known. Correctness of algorithm is verified using SIL. PIL verify imple-
mentation on target HW platform. For implementation in target processor must be algo-
rithm re-write into target source code. For portability between simulation and development
environment is good idea implement control algorithm in ANSI C. Make hand-written mis-
take-free ANSI C source code is difficult and time-consuming.

2. ALGORITHM DEVELOPMENT
In Simulink C language is supported in S-function block. MATLAB/Simulink can be used
for create and debug the algorithm. In first step of development are the algorithms and nu-
merical methods implemented using MATLAB M-files or Simulink M-files S-Function.
Firstly these are verify in simulation and then in real-time simulation with real plane con-
trol. After checkout M-files and MATLAB functions are rewrite to the C source code. This
must by repeatedly verify in simulation and real-time control. After debagging may by im-
plemented into target PLC for PIL test and then can be used for control of real plane. Time
for algorithm development and implementation can by rapidly reduced if automatic gener-
ating of source code may by used.

Figure 1: Scheme for hand written develop algorithm in MATLAB/Simulink

2.1. DEVELOPMENT WITH REAL-TIME WORKSHOP EMBEDDED CODER
Using Real-Time Workshop Embedded Coder ANSI C source code in production quality
can by created automatically. Source code can by automatically created from simulink
model or its parts (Embedded MATLAB function block typically). Embedded MATLAB
Function block in simulink model must by use instead M-file s-function or MATLAB
function block. Syntax and majority of MATLAB functions can by used in this block.

Figure 2: Algorithm develop using Real Time Workshop Embedded coder

2.2. B&R AUTOMATION RUNTIME TARGET FOR MATLAB
This SW is MATLAB assistance which cooperates with Real-Time Workshop Embedded
Coder and development environment of B&R PLC (Automation Studio 3.0). Implements
automatically transfer generated C source code into requested project in Automation Stu-
dio 3.

3. SELF-ADAPTING LQ CONTROLLER
The purpose of adaptive controllers is to adapt parameters of control law to changes of the
controlled system. Controller is separated into two main parts: identification and controller.
Recursive least mean squares (RLS) and identification based on neural network(NN) are
used. And the linear quadratic optimal controller is used as the control algorithm. Figure 3
shows the architecture of the controller where w denotes desired value, u action value and y
output of the controlled system.

Figure 3: Architecture of self-tuning LQ controller

3.1. ON-LINE IDENTIFICATION
The model 3. order is used in this case.

() 1
3

1
2

1
1

1
3

1
2

1
11

1 −−−

−−−
−

+++
++

=
zazaza

zbzbzbzFM (1)

The model can be written in vector forms as follows

() () ()kkky T θϕ=ˆ (2)

where

() () () () () () ()[]Tkykykykukukuk 321321 −−−−−−−−−=ϕ (3)

is the vector of measured inputs and outputs and

() () () () () () ()[]Tkakakakbkbkbk 321321=θ (4)

is vector of estimated system parameters.

3.2. RLS ALGORITHM

The method is widely used and is easy to implement. Vector of estimated parameters is
computed at every step by equation

() () () () () ()[]111 −−−+−= kkkykKkk Tθϕθθ (5)

where y(k) is process output. K is computed as follows

() () ()
() () ()kkPk

kkPkK T ϕϕλ
ϕ

1
1

−+
−

= (6)

where λ is forgetting factor and P(k) is covariance matrix

() () () () ()
λ
ϕ 11 −−− kPkkKkPkP

T

 (7)

3.3. IDENTIFICATION BASE ON NN WITH LEVENBERG-MARQUART LEARNING

This method is numerical solution of minimization sum of squares generally nonlinear
function. Inputs and outputs from process are accumulated to matrix

() () () ()[]21 −−= kkkkX ϕϕϕ K (8)

Iterative algorithm is given by equation

() () () ()[] () ()kiEkiJIkiJkiJkiki T ||||1|| 1−
+−−= λθθ (9)

Where k is step, i is iteration in step, λ is optional parameter which determine evolution of
prediction error and E(i|k) is error vector

() () () ()kkXkTkiE TT θ−=| (10)

T(k) is vector of last values of process outputs

() () () () ()[]321 −−−= kykykykykT (11)

Jacobian matrix J is evaluated in each iteration [5]

() ()
()

() () ()()
() ()kX

ki
kkXkT

ki
kiEkiJ T

TT

−=
∂
−∂

=
∂
∂

=
||

||
θ

θ
θ

 (12)

3.4. LQ CONTROLLER
Linear quadratic controller is state controller with feedback proportional gains from proc-
ess states. Quadratic criterion without end state is

() () () ()()∑
∞

=

+=
0k

TT kRukukQxkxJ (13)

where matrix R scale control energy and matrix Q scales error of system states. Input out-
put description is get from identification. State model observer is computed from them [5].
Control signal is given by

() ()kxKku LQ−= (14)

KLQ vector is solved as follow

[] APBBPBRK LQ
T

LQ
T

LQ
1−

+= (15)

() ()LQLQ
T

LQLQ
T
LQLQ BKAPBKARKKQP −−++= (16)

3.5. FINAL IMPLEMENTATION

Validation of controller was realized using SIL, PIL and real-time control physical plan
from Simulink. Real Time Workshop Embedded coder was used for building C source

code from simulink model. Only this generated source code was compiled and transferred
into control PLC. Physical model was in control. Results are on Figure 4.

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

1

1.5

2

t(s)

y(
k)

,w
(k

)

w(k)

disturbance
y(k)-RLS

y(k)-NN

0 500 1000 1500 2000 2500 3000
-8

-6

-4

-2

0

2

4

6

8

u(
k)

t(s)

u(k)-RLS

u(k)-NN

Figure 4: Results of implemented self-tuning LQ controller with RLS and NN identifications based. At the

top desired value and output of controlled system. Bellow action value.

4. CONCLUSION

This paper verified possibility use Real Time Workshop Embedded coder for automatically
created ANSI C source code from simulink model. Self-tuning LQ controller was created
in simulink. Validate in simulation and real-time control with physical model. Conse-
quently the C source code was built using Real Time Workshop Embedded coder and im-
plement to the target control system (B&R PLC).

ACKNOWLEDGEMENT
The paper has been prepared as the solution by the Czech Ministry of Education in the
frame of MSM MSM0021630529 Intelligent Systems in Automation.

REFERENCES

[1] The MathWorks: Real-Time Workshop Embedded Coder 5, User’s Guide

[2] The MathWorks: On-line documentation, http://www.mathworks.com

[3] B&R Industrie-Elektronic: B&R Automation Runtime Target for Simulink

[4] Veleba, V. Pivoňka, P.: Adaptive controller with identification Based on Neural
Networks for Systems with Rapid Sampling Rates. WSEAS Transactions on Sys-
tems, 2005, vol. 4. issue 4, pp.385-388, ISSN 1109-2777

[5] Dvořáček, M.: Estimátor v systému regulace s proměnnou strukturou, Diploma thesis
in Czech, FEEC BUT, Brno 2008

